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Figure 1: On the left, two physically-simulated agents engage in a competitive match, controlled by our strategy and skill
controllers. The center panels show the five learned skills: Forehand Drive, Push and Smash, Backhand Drive and Push,
showcasing the skill controller’s ability to execute a diverse set of skills. On the right, a human interacts with the simulated
agent through VR.

ABSTRACT
Recent advancements in physics-based character animation lever-
age deep learning to generate agile and natural motion, enabling
characters to execute movements such as backflips, boxing, and
tennis. However, reproducing the selection and use of diverse motor
skills in dynamic environments to solve complex tasks, as humans
do, still remains a challenge. We present a strategy and skill learn-
ing approach for physics-based table tennis animation. Our method
addresses the issue of mode collapse, where the characters do not
fully utilize the motor skills they need to perform to execute com-
plex tasks. More specifically, we demonstrate a hierarchical control
system for diversified skill learning and a strategy learning frame-
work for effective decision-making. We showcase the efficacy of our
method through comparative analysis with state-of-the-art meth-
ods, demonstrating its capabilities in executing various skills for
table tennis. Our strategy learning framework is validated through
both agent-agent interaction and human-agent interaction in Vir-
tual Reality, handling both competitive and cooperative tasks.

CCS CONCEPTS
• Computing methodologies→ Physical simulation; Motion
Processing.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07.
https://doi.org/10.1145/3641519.3657437

KEYWORDS
Character Animation, Physics-based Characters, Deep Reinforce-
ment Learning, Multi-character Interaction, Virtual Reality, Table
Tennis

ACM Reference Format:
Jiashun Wang, Jessica Hodgins, and Jungdam Won. 2024. Strategy and Skill
Learning for Physics-based Table Tennis Animation. In Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference
Papers ’24 (SIGGRAPH Conference Papers ’24), July 27-August 1, 2024, Denver,
CO, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3641519.3657437

1 INTRODUCTION
The integration of deep learning into physics-based character an-
imation has led to significant advancements in generating agile
and natural motion, enhancing the lifelike quality of characters in
complex environments. To increase the versatility of these char-
acters, it is essential to ensure that their skills can be reused in
environments or conditions that may not precisely match their
training data. To achieve this goal, recent approaches have focused
on learning reusable skill embeddings. These approaches are typi-
cally trained in two stages. Initially, characters learn various skill
embeddings by imitating reference motions. Then, in the task train-
ing stage, they apply these skills to accomplish diverse tasks. These
approaches have demonstrated remarkable success in generating
natural motion in various environments.

However, when the differences between the skills are subtle,
these approaches often suffer from mode collapse during the task
training phase. Specifically, although agents (a.k.a. characters) can
learn various skills during the imitation stage, they tend to use
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a limited set of skills for the downstream tasks, neglecting the
diversity of their learned skills in the imitation stage. Thus, mode
collapse restricts the agents’ potential in scenarios that require a
diverse set of skills. Mode collapse also restricts exploration during
RL training, resulting in sub-optimal task performance.

Another relatively unexplored topic relates to the decision strat-
egy of agents, particularly their ability to dynamically formulate
decision strategies that encompass skill selection and associated
skill goals in response to task demands. Most previous studies either
have not required a diverse skill set or have relied on a human user
to manually determine skills for the agents. Agents have generally
not been equipped with the capability to employ different strategies
to adapt to complex and dynamic environments.

Our research introduces a learning approach to enhance both
the skill and strategic decision-making capabilities of physically
simulated agents. First, we develop a hierarchical skill controller
that enables agents to utilize different table tennis skills and tran-
sition among them rapidly. This controller effectively addresses
mode collapse during task training. Second, we develop a method
for strategy learning, enabling agents to explicitly select and utilize
specific skills for different types of interaction, whether competitive
or cooperative. An overview of the results is in Figure 1.

We demonstrate the effectiveness of our approach through two
interaction environments: a table tennis match played between two
simulated agents and a match between a human and a simulated
agent in virtual reality (VR). In the agent-agent environment, the
agents demonstrate improved skill diversity and decision strategy in
simulated table tennis matches compared to results predicted by the
previous techniques. In the human-agent interaction environment,
we evaluate both cooperative and competitive scenarios in real-time
interactions between humans and agents. These environments not
only validate our approach but also provide platforms for future
research into complex agent behaviors and human-agent dynamics.
Code and data for this paper are at https://jiashunwang.github.io/
PhysicsPingPong/.

We summarize the contributions of this paper as follows:

• A hierarchical skill controller that empowers physically sim-
ulated agents to explicitly perform various skills, enabling
rapid skill transitions. An interaction learning framework
designed to create a decision strategy allows agents to contin-
ually learn and adapt, meeting the demands of competition
or cooperation in dynamic environments with other agents
and with humans.
• Novel results demonstrating our learning framework’s ca-
pacity to generate intelligent decisions and natural motions
for table tennis in two scenarios: agent-agent interactions
in a simulated environment and human-agent interactions
in a VR environment. The agent-agent environment is a
platform for developing and testing competitive and cooper-
ative algorithms while the VR environment allows natural
human-agent interactions.

2 RELATEDWORK
We review the closest related work in physics-based character an-
imation with reusable skills and multi-character animation. We
review studies on transitions among skills as we develop a method

for skill selection and transition. We further discuss relevant re-
search in human-agent interaction in VR.

2.1 Physics-based Character Animation
Incorporating physical laws into character animation allows for
the development of controllers that generate more realistic behav-
iors [Hodgins et al. 1995; Laszlo et al. 1996]. Optimization tech-
niques, such as trajectory optimization [de Lasa et al. 2010; Mor-
datch et al. 2012; Yin et al. 2008] and sampling-based methods [Liu
et al. 2016, 2010] have been widely explored. Recently, deep rein-
forcement learning (DRL) has been shown to substantially enhance
control capabilities [Liu and Hodgins 2017; Peng et al. 2017]. Due to
its flexibility and ease of use, DRL methods eliminate the need for
designing complex objective functions while delivering outstanding
results and have attracted significant research interest as a result.

Data-driven methods have become prevalent in physics-based
character animation studies since a DRL-based method was intro-
duced by Peng et al. [2018]. The idea has been extended for handling
larger datasets [Bergamin et al. 2019; Won et al. 2020] and for allow-
ing recombination of existing state transitions [Peng et al. 2021].
Recently, much attention has been paid to reusable motor skills. The
idea is to learn a latent space of reference motions and then to reuse
the learnt space for downstream tasks. Various latent models have
been studied such as encoder-decoders with autoregression [Merel
et al. 2019; Won et al. 2021], spherical embedding [Dou et al. 2023;
Peng et al. 2022; Tessler et al. 2023], conditional variational autoen-
coder (VAE) [Won et al. 2022; Yao et al. 2022], and vector-quantized
VAE [Zhu et al. 2023]. Some researchers have also proposed part-
wise models to maximize reusability of reference motions [Bae et al.
2023; Xu et al. 2023].

Our system is designed for table tennis games, involving two
players (i.e., agents). Two or more agents have been created primar-
ily with kinematic approaches [Kwon et al. 2008; Liu et al. 2006;
Shum et al. 2008, 2012; Wampler et al. 2010]. There exist two re-
cent approaches [Won et al. 2021; Zhu et al. 2023] demonstrating
examples of physically simulated boxing. Zhang et al. [2023] build
a system to learn tennis skills from broadcast videos and produce
rallies with a mirrored opponent. In their approach, kinematics-
based motion generation is utilized first, followed by physics-based
tracking, relying on residual forces and extra arm control for suc-
cessful strikes. Skill and target selection are not learned but rather
performed manually or randomly to create a scene including two
players. In contrast, our method learns not only agile and precise
motor control to strike the ball but also strategies to select skills
and targets based on the movement of the opponent and the ball.

2.2 Transition of skills
Option-based methods [Bagaria and Konidaris 2020; Jain et al. 2021;
Klissarov et al. 2017; Konidaris and Barto 2009; Sutton et al. 1999]
represent skills as options, which are sequentially constructed, with
each option’s execution in the chain enabling the agent to execute
the subsequent option. Lee et al. [2019] propose learning additional
transition policies to connect primitive skills and introduce prox-
imity predictors, which yield rewards based on proximity suitable
for initial states for the next skill. One challenge of transitioning
between different skills to chain long-horizon tasks is addressed
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Figure 2: An overview of ourmethod. Strategy action includes
the skill command and ball’s target landing location. Skill
action includes the target joint angles for PD controllers,
blended from the outputs of imitation policies.

by terminal state regularization [Lee et al. 2021]. Behavior Trees
are also a common method for planning the transition between
different states [Cheng et al. 2023; French et al. 2019; Marzinotto
et al. 2014]. These methods achieve skill transitions by ensuring
that the terminal state of the previous stage is close to the initial
state of the next stage. While these methods work well for tasks
that are not time-sensitive, table tennis, which involves high-speed
movements and rapid responses, poses a challenge as players do
not always hit the ball from a well-defined initial state.

2.3 Human-agent interaction
Research has focused on human sports training within VR [Liu
et al. 2020; Pastel et al. 2023]. However, these studies often lack a
physically simulated opponent. There are commercial games that
allow people to interact with an agent in VR for sports activities,
such as boxing, golf, and badminton. Eleven Table Tennis [2016]
is a VR-based table tennis game similar to the one we have con-
structed, which enables a human to play with an agent. However,
this agent is not simulated with full-body dynamics, rather it is
simulated with only a floating head and a floating paddle. Advances
in GPU-accelerated simulation and our control algorithm, enable
us to create a physically-simulated agent with full-body dynamics
that can play in real-time with humans. Another relevant area in-
volves enhancing the agent’s capabilities with human-in-the-loop
methodologies [Brenneis et al. 2021; Li et al. 2022; Seo et al. 2023;
Wang et al. 2023] using extended reality. Our work differs from
previous studies by bringing humans and agents into a unified en-
vironment allowing bidirectional physical interaction, where they
can cooperate and compete.

3 METHOD OVERVIEW
We propose a hierarchical approach that includes a strategy-level
controller and a skill-level controller. The strategy-level controller
takes the states of the agent, opponent, and ball as inputs, and out-
puts a strategy action, which includes the skill to use and the target
landing location for the ball. Meanwhile, the skill-level controller
takes the states of the agent and ball, along with the strategy action
as inputs, and then generates a skill action, which includes the
target joint angles for PD controllers. An overview of our method
is in Figure 2 and Figure 3 shows the architecture of our method.

4 SKILL-LEVEL CONTROLLER
Three stages are required to train our skill-level controller. Initially,
we train imitation policies using the motion capture data. Then the
ball control policy for each skill is learned, which enables the agent
to hit back balls using the corresponding imitation policy. Finally,
we learn a policy that enables the agent to perform various skills
sequentially while making plausible transitions among them. We
call this policy the mixer policy. Once the skill-level controller is
trained, the agent can proficiently and continuously execute various
skills, sending balls to diverse target locations.

4.1 Imitation Policy
We first categorize the motion capture dataset into five subsets
corresponding to each skill. This subdivision allows us to train the
skill-specific imitation policies. We also utilize all the data to train
a universal imitation policy. The imitation policy is represented as
𝜋𝑖 (𝑎𝑖 |𝑠, 𝑧𝑖 ), where 𝑖 ∈ {1, 2, 3, 4, 5, 𝑢}, 1 ∼ 5 are indices of different
skills and𝑢 is the index of the universal imitation policy. 𝑧𝑖 is a latent
variable sampled from a hyper-sphere distribution, and 𝑠 is the
agent’s state. The goal of the imitation policy is to output an action
𝑎𝑖 that leads to simulated motions similar to the reference motions.
Thus, each skill-specific imitation policy generates motions similar
to its corresponding reference motion in each skill subset, while
the universal imitation policy generates motions encompassing the
entire motion capture dataset. When solving specific tasks in the
later stage, using a single universal imitation policy trained with a
variety of motions often leads to the mode collapse problem. The
agent does not explore various available skills enough; instead, it
repeats very limited skills, and the task performance remains sub-
optimal. Our controller design is inspired by mixture-of-experts
and mitigates this problem. Each imitation policy 𝜋𝑖 (𝑎𝑖 |𝑠, 𝑧𝑖 ) is
built by the adversarial framework ASE [Peng et al. 2022], where
the policy is updated so that it tricks a motion discriminator 𝐷𝑖 .
The transitions 𝑑𝑀𝑖 (𝑠, 𝑠′) existing in the motion capture dataset are
used as positive samples while the transitions 𝑑𝜋𝑖 (𝑠, 𝑠′) generated
from the policy 𝜋𝑖 are used as negative samples. The discriminator
is trained by minimizing:

min
𝐷𝑖
− E𝑑

𝑀𝑖
(𝑠,𝑠′ ) log(𝐷𝑖 (𝑠, 𝑠′)) − E𝑑

𝜋𝑖
(𝑠,𝑠′ ) log(1 − 𝐷𝑖 (𝑠, 𝑠′))

+ 𝜆𝑔𝑝E𝑑
𝑀𝑖
(𝑠,𝑠′ )




∇𝜙𝐷𝑖 (𝜙)��𝜙=(𝑠,𝑠′ )


2 , (1)

where the last term is a gradient penalty regularization with a con-
stant factor 𝜆𝑔𝑝 . We train encoders 𝑞𝑖 to encourage correspondence
between the transition (𝑠, 𝑠′) and the latent variable 𝑧𝑖 . The encoder
is modeled as a von Mises-Fisher distribution and it is trained by
maximizing its log-likelihood:

max
𝑞𝑖
E𝑝 (𝑧𝑖 )E𝑑𝜋𝑖 (𝑠,𝑠′ |𝑧𝑖 ) [log𝑞

𝑖 (𝑧𝑖 |𝑠, 𝑠′)],

𝑞𝑖 (𝑧𝑖 |𝑠, 𝑠′) = 1
𝑍
𝑒𝑥𝑝 (𝜇𝑞𝑖 (𝑠, 𝑠′)𝑇 𝑧𝑖 )

(2)

where 𝜇𝑞𝑖 (𝑠, 𝑠′) is the mean of the distribution, and Z is a normal-
ization constant. Given a discriminator 𝐷𝑖 , the reward to train 𝜋𝑖

is defined as:

𝑟𝑡 = − log(1 − 𝐷𝑖 (𝑠𝑡 , 𝑠𝑡+1)) + 𝛽 log𝑞𝑖 (𝑧𝑖𝑡 |𝑠𝑡 , 𝑠𝑡+1). (3)
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Figure 3: The architecture of our method. We train the skill-level controller through the stages of imitation policies, ball control
policies, and finally, the mixer policy. We train the strategy-level controller after the skill-level controller is ready and its
weight is frozen. ⊗⊕ stands for the weighted sum in Equation 8.

where 𝛽 is the relative weight. Additionally, a diversity term is
included to encourage different latent variables to represent distinct
motions. Bringing everything together, the objective of 𝜋𝑖 becomes:

max
𝜋𝑖
E𝑝 (𝑍 )E𝑝 (𝜏 |𝜋𝑖 ,𝑍 ) [

𝑇∑︁
𝑡=0

𝛾𝑡 (𝑟𝑡 )] (4)

− 𝜆𝐷𝑖E𝑑𝜋𝑖 (𝑠 )E𝑧𝑖1,𝑧𝑖2∼𝑝 (𝑧𝑖 )


(
𝐷𝐾𝐿 (𝜋𝑖 (·|𝑠, 𝑧𝑖1), 𝜋

𝑖 (·|𝑠, 𝑧𝑖2))
0.5(1 − 𝑧𝑖1𝑧

𝑖
2)

− 1
)2 ,

where 𝐷𝐾𝐿 (·| |·) measures the KL-divergence between two distribu-
tions, 𝑧𝑖1 and 𝑧

𝑖
2 refer two different latent variables, 𝛾 is the discount

factor and 𝜆 is a constant used to balance the weight.

4.2 Ball Control Policy
Once the agent can imitate each skill 𝑖 ∈ {1, 2, 3, 4, 5}, we train ball
control policies 𝜔𝑖 (𝑧𝑖 |𝑠, 𝑏,𝑦) to enable the agent to hit and move a
ball launched from a random location to the desired location, where
𝑠 denotes the state of the agent, 𝑏 represents the state of the ball
and 𝑦 is the target landing location for the ball. The task reward 𝑟
is a composite of three terms: the paddle reward 𝑟𝑝 , the ball reward
𝑟𝑏 , and the style reward 𝑟𝑠 ,

𝑟 (𝑡) = 𝑤𝑝𝑟𝑝 (𝑡) +𝑤𝑏𝑟𝑏 (𝑡) +𝑤𝑠𝑟𝑠 (𝑡), (5)

where𝑤𝑝 ,𝑤𝑏 , and𝑤𝑠 are the relative weights. The paddle reward
𝑟𝑝 encourages the agent to position the paddle close to the ball. The
reward is defined as:

𝑟𝑝 (𝑡) =
{

exp(−4| |𝑥𝑝 (𝑡) − 𝑥𝑏 (𝑡) | |2), if 𝐶𝑏𝑝 (𝑡) = 0,
0, otherwise,

(6)

where 𝑥𝑝 (𝑡) and 𝑥𝑏 (𝑡) represent the positions of paddle and ball,
respectively,𝐶𝑏𝑝 (𝑡) is a binary variable representing contact states.
𝐶𝑏𝑝 (𝑡) = 0 means the ball has not contacted the paddle until time
𝑡 , while 𝐶𝑏𝑝 (𝑡) = 1 indicates the ball has contacted the paddle at
time 𝑡 or contacted previously before time 𝑡 . It will be reset to 0

whenever the next ball is launched. The ball reward 𝑟𝑏 is given by:

𝑟𝑏 (𝑡) =


1 + exp(−4| |𝑥𝑐 (𝑡) − 𝑥𝑡 (𝑡) | |2),

if 𝐶𝑏𝑝 (𝑡) = 1 and 𝐶𝑏𝑡 (𝑡) = 0,
0, otherwise,

(7)

where 𝑥𝑡 (𝑡) is the target landing location of the ball, 𝑥𝑐 (𝑡) repre-
sents the anticipated landing location on the table, calculated using
Newton’s equation of motion for the point mass (i.e., quadratic
trajectory), with its state corresponding to the current position
and velocity of the ball. 𝐶𝑏𝑡 (𝑡) is a binary variable checking the
contact history between the ball and the table, which is updated
similarly to𝐶𝑏𝑝 (𝑡). The agent receives the maximum reward when
it successfully hits the ball and the ball moves toward the target
location. We also apply the style reward, 𝑟𝑠 = − log(1−𝐷𝑖 (𝑠𝑡 , 𝑠𝑡+1))
in the task training similarly to ASE [Peng et al. 2022], where 𝐷𝑖 is
the discriminator learned during the previous stage.

4.3 Mixer Policy
While our agent can play table tennis using the ball control policies
with the corresponding imitation policies, its capability is limited
to repeating a single skill. Simply transitioning from one controller
to another during play often leads to failure due to a mismatch
between the end state of one skill to the start state of the next. To
create plausible transitions among the different skills, we learn a
mixer policy 𝜔𝑚 (𝑧𝑚 |𝑠, 𝑏, 𝛿,𝑦), which takes the agent state 𝑠 , the
ball state 𝑏, and the strategy action (𝛿,𝑦) as input, where 𝛿 is a
one-hot vector determining the skill to use and 𝑦 is the target ball
landing location, then generates the latent variable for the universal
imitation policy 𝜋𝑢 and a set of blending weights 𝜑 , mixing the skill
actions in a joint-wise manner. In other words, 𝜑 determines which
policy the agent relies on among the transition and five different
skills. The target joint angles for PD controllers are computed as

𝑎 = 𝜑 ⊙ 𝜋𝑢 (·|𝑠, 𝑧𝑢 ) + (1 − 𝜑) ⊙
5∑︁
𝑖=1

𝛿𝑖𝜋
𝑖 (·|𝑠, 𝑧𝑖 ) (8)
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ALGORITHM 1: Strategy learning
Input: Number of iterations 𝑁 , interaction environment 𝐸𝑛𝑣.
Output: Updated policy 𝑓 .
𝑓 ← Random initialization ;
for 𝑖 ← 1 to 𝑁 do
{ (𝑜expert

𝑘
, 𝑐

expert
𝑘

) }𝐾
𝑘=1 ← Interact(𝐸𝑛𝑣, 𝑓 );

Apply stochastic gradient descent to update 𝑓 using Equation 9
end

where 𝛿 = (𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5) is a one-hot vector indicating the skill
selected. While training the mixer policy, the agent is asked to per-
form the ball control task with randomly launched balls, randomly
selected skills, and random target locations. The same rewards used
for learning ball control policies are employed, and the weights of
all other policies remain frozen.

5 STRATEGY-LEVEL CONTROLLER
The strategy-level controller is developed by iterative behavior
cloning inspired by [Oh et al. 2018]. More specifically, we first
collect interaction data by randomly sampling strategy actions
during agent-agent play or human-agent interactions with VR. This
data is then used to update the strategy-level controller, and we
repeat this process by collecting new interaction data with the latest
strategy-level controller. When collecting interaction data, there are
two options: competition and cooperation. To train a competitive
strategy, we choose data that results in victories, whereas in a
cooperative strategy, we choose sequences where the opponent
successfully catches the ball.

A strategy-level controller produces a skill index and a target
landing location repeatedly so that they satisfy the requirements
of different applications. More specifically, the strategy-level con-
troller 𝑓 takes the strategy observation 𝑜 = (𝑠, 𝑠, 𝑏) as input where
𝑠 , 𝑠 , and 𝑏 are the agent state, the opponent state, and the ball state,
respectively, then outputs the strategy action 𝑐 = (𝛿,𝑦), where 𝛿 is a
one-hot vector determining the skill to use, and 𝑦 is the target land-
ing location of the ball. The strategy action is updated when the ball
starts moving from the opponent to the agent. To effectively learn
a strategy-level controller, we adopt a behavior cloning approach
with iterative refinement, aiming to learn strategies from available
expert demonstrations {(𝑜expert

𝑘
, 𝑐
expert
𝑘

)}𝐾
𝑘=1 (see Algorithm 1). As

a structure of the controller, we utilize a Conditional Variational
Autoencoder (CVAE) to model the stochastic nature inherent in
sports gameplay. During training, the CVAE encoder takes 𝑜 and 𝑐
as inputs and generates the mean 𝜇 and variance 𝜎2 of the posterior
Gaussian distribution 𝑄 (𝑢 |𝜇, 𝜎2). We then sample a latent variable
𝑢 from this distribution and concatenate it with observation 𝑜 as
input for the decoder, which reconstructs the action 𝑐′. The training
loss is defined as:

𝐾∑︁
𝑘=1
| |𝑐expert
𝑘

− 𝑐′
𝑘
| | + 𝛽𝐾𝐿𝐷𝐾𝐿 (𝑄 (𝑢 |𝜇𝑘 , 𝜎2𝑘 ) | |N (0, 𝐼 )), (9)

where 𝐷𝐾𝐿 (·| |·) measures the KL divergence between the two dis-
tributions and 𝛽𝐾𝐿 is the relative weight. During inference the de-
coder is utilized solely, it takes a randomly sampled latent variable
𝑢 and the observation 𝑜 , and then generates the strategy action that

guides the agent to perform a corresponding skill. If the opponent
successfully returns the ball, this process repeats. We collect expert
demonstrations from two different interaction environments (𝐸𝑛𝑣
in Algorithm 1). The details of each environment will be explained
in Section 6.

6 INTERACTION ENVIRONMENT
We introduce the agent-agent and human-agent interaction envi-
ronments that we build to validate the strategy learning approach.

The agent-agent interaction environment is an environment
where two virtual agents play table tennis with each other (Figure 1
left column). We name one agent as our agent and the other as the
opponent. In the process of learning a strategy-level controller for
our agent, the opponent uses a fixed heuristic strategy-level con-
troller while the controller for our agent is updated iteratively. More
specifically, we let our agent the opponent play with each other
using their own strategy-level controllers, collect those demonstra-
tions, and then use them to update our agent’s controller. If our goal
is to learn a competitive strategy, that can beat the opponent, we
selectively use demonstrations leading to wins. On the other hand,
we use demonstrations where the opponent successfully returns the
ball when aiming to learn a cooperative strategy. In our system, we
utilize two types of heuristic strategy-level controllers: a random
strategy and a video strategy. The random strategy selects skills
and target landing locations randomly from a uniform distribution.
The video strategy is constructed by using broadcast videos. We
extract expert demonstrations {(𝑜video

𝑘
, 𝑐video
𝑘
)}𝐾
𝑘=1 from existing

broadcast videos (20 minutes in total). Subsequently, we train a
CVAE using the behavior cloning method.

The human-agent interaction environment allows a human
user to play with a virtual agent. In our system, the user interacts
with an agent by using a VR device, including a head-mount display
and a hand controller ((Figure 1 right column)). The VR interface
operates through Unity while the physics-based simulation runs on
Isaac Gym [Makoviychuk et al. 2021]. To enable the simulated agent
to interact with a human user, we physically simulate the user’s
paddle, with its position and orientation controlled via signals from
the VR interface. Specifically, for paddle control, we use the VR
hand controller’s Cartesian pose 𝑞user and the simulated paddle
pose 𝑞sim to calculate the target velocity ¤𝑞target = (𝑞user−𝑞sim)/Δ𝑡 ,
where Δ𝑡 is the simulation step. We use this target velocity as an
input to the velocity controller provided by the simulator. For visu-
alization, Unity takes the state of the simulated agent, user’s paddle,
and ball as inputs and renders them using visualization assets. This
implementation significantly reduces the amount of information
exchange compared to a previous study that sent stereo images [Seo
et al. 2023], enabling real-time interaction and gameplay. By consid-
ering a human user as the opponent, the strategy-level controller
of the agent can be built through the same pipeline used for the
agent-agent interaction environment.

7 EXPERIMENTS
We evaluate the skill-level controller based on motion quality and
task performance. We assess the strategy-level controller by exam-
ining its effectiveness in agent-agent and human-agent interaction
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Figure 4: Comparison with other methods with four skill commands. ASE and CASE may use wrong skills as shown in the red
box. ET may terminate earlier to return to a preparation pose, as shown in the yellow boxes.

Figure 5: Transition results with only using forehand and backhand drive controllers. Both controllers are trained with random
initialized configurations from the motion capture data. As shown in the red boxes, the agent attempts to use another forehand
drive before the next ball is launched, which prevents it from switching back to a backhand drive in time.

environments, with the demands of both competition and coopera-
tion scenarios.

7.1 Skill evaluation
We evaluate the skill performance from motion quality and task
performance. The evaluation of motion quality measures the natu-
ralness of generated motions when given the desired skill command
and whether the agent performs the correct skill. The evaluation
of task performance measures the overall proficiency in playing
table tennis. We compare our method with two state-of-the-art
methods, ASE [Peng et al. 2022] and CASE [Dou et al. 2023], as
well as an explicit transition model (ET) which is a variant of our
method with the mixer policy 𝜔𝑚 removed from our model. We
train an explicit controller to handle skill transitions by taking over
the control when the ball passes the net until it is returned to the
agent. The controller is also built using the ball control-imitation
architecture. The key difference between our approach and ET is
that ours provides continuous action blending with the selected
skill’s action at every time step, whereas ET does not.

7.1.1 Motion quality. We design three metrics to evaluate the mo-
tion quality, particularly to evaluate the naturalness and mode
collapse. The first metric is Discriminator Score, which measures
how similar the current strike motion is to the reference motion of
𝑖-th target skill. Because we have five skills, we train a discriminator
𝐷𝑖𝑡𝑒𝑠𝑡 for each skill and utilize the following equation to calculate

the score:

Discriminator Score i =
1
𝑇

𝑇−1∑︁
𝑡=0
− log(1 − 𝐷𝑖𝑡𝑒𝑠𝑡 (𝑠𝑡 , 𝑠𝑡+1)), (10)

where 𝑇 is the length of a single strike motion. The details of train-
ing 𝐷𝑖𝑡𝑒𝑠𝑡 will be introduced in Appendix D. The second metric is
Skill Accuracy, to measure whether the agent performs the correct
skill given the target skill command. Specifically, given a motion
sequence, we first classify it by taking the index of the discriminator
which provides the highest value. Then, we compare it with the
target skill command to calculate accuracy. The third metric, Diver-
sity Score, is designed to test whether motions for drive and push
commands are distinctive enough. In table tennis, motions within
each skill category (e.g., forehand drive vs. forehand push) might
exhibit subtle differences, even though their roles in gameplay can
be significantly distinct. Diversity Score measures the capability of
distinguishing motions that are visually similar. It is calculated by

Diversity Score =
1

2𝑁 2

∑︁
𝑖∈{1,3}

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1
| |𝑠𝑖𝑚 − 𝑠𝑖+1𝑛 | |, (11)

where 𝑠𝑖 is the state that the agent hits the ball under skill command
𝑖 . Specifically 𝑖 ∈ {1, 3} stands for forehand drive and backhand
drive and 𝑖 +1 ∈ {2, 4} stands for forehand push and backhand push
respectively. 𝑁 is the total number of hits for each skill command.
We only take into account the moment when the agent’s paddle
makes contact with the ball to calculate this score. The first two
metrics evaluate a general skill mode collapse problem, for example,
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using forehand motions when being asked to use backhand. The
third metric is specifically designed to measure if the agent has the
ability to accurately perform drive and push skills.

The evaluation results are reported in Table 1, where the val-
ues are computed with 10k balls randomly launched toward the
agent equipped with the respective skill controller. For the Discrim-
inator Score, our method significantly surpasses ASE and CASE,
and achieves 15.6% higher score than ET. These results prove our
method generates motions that are the most similar to the reference
target skill. As shown in the Skill Accuracy results, our method uses
the correct skills to hit the ball in most cases (0.76 in Table 1). While
ASE and CASE only use the correct skill with an accuracy of 0.38
and 0.47. In Diversity Score, our method achieves 30.7%, 32.3%, and
9.4% higher scores than ASE, CASE, and ET respectively. We also
show a qualitative comparison in Figure 4. We find ASE and CASE
often use forehand skills when asked to use backhand skills, or vice-
versa, as shown in the red boxes in Figure 4. And we can’t observe
any forehand smash skill. Even when the correct skills are used, the
naturalness remains insufficient. ET often does not complete the
skills; instead, the skills are terminated earlier to return to a prepa-
ration pose, as shown in the yellow box in Figure 4. ASE and CASE
often overlook skill commands, tending to use relatively fewer skills.
This error occurs because, during the task training, these methods
fall into mode collapse, making it challenging to effectively explore
various skills. In contrast, our approach leverages an idea of the
mixture-of-experts approach to avoid this problem. We further test
the use of individual skill controllers without any design for tran-
sitions. Each skill controller is trained with randomly initialized
configurations sampled from the motion capture data. As shown
in Figure 5, after executing a forehand drive, the agent attempts
another forehand drive before the next ball is launched—a typical
behavior for single-skill controllers. This unnecessary movement
prevents it from switching to a backhand drive in time, ultimately
causing a missed shot.

7.1.2 Task performance. To assess the task performance of the skill
controller, we evaluate two aspects: sustainability and accuracy.
Sustainability is determined by the average number of successful
continuous returns, while accuracy is measured by the average
distance in meters between the target landing location and the
actual contact location on the table. Besides testing on the training
distribution, we collect some ball tracking data with faster ball tra-
jectories from a match between high-ranking players and evaluate
whether each method can perform well with the testset of the ball
tracking data. We report the evaluation results in Table 2. The num-
bers in parentheses are the results of the fine-tuning experiments.
Our method can achieve the largest number of average hits and
the second-best accuracy. Although ET can achieve higher accu-
racy, it is not sustainable, especially for more challenging balls. It
only achieves an average of 3.66 hits because it often lacks time to
respond to the next ball due to the explicit transition design.

7.1.3 Blending weights of the mixer policy. We test the agent with
different skills to hit the ball and visualize the average blending
weights 𝜑 of the shoulder, elbow, and wrist joints in Figure 8. We
can observe that the weights of the mixer policy are usually lowest
at the moment the paddle contacts the ball, and higher before and
after transitions between different skills. It indicates a reliance on

Table 1: Comparisons on Discriminator Score, Skill Accuracy,
and Diversity Score.

ASE CASE ET Ours

Discriminator Score 1.62 2.28 4.95 5.72
Skill Accuracy 0.38 0.47 0.69 0.76
Diversity Score 6.13 6.05 7.32 8.01

Table 2: Task performance evaluation. Our method can
achieve the longest average hits and the second best accuracy.

ASE CASE ET Ours

Avg Hits 9.54 (5.94) 8.79 (5.28 6.55 (3.66) 10.93 (6.28)
Avg error 0.28 (0.33) 0.35 (0.39) 0.25 (0.28) 0.26 (0.31)

Figure 6: Skill command distribution of our method and RL.

Figure 7: Target landing locations of our method, RL and
Human.

the pre-trained ball control policy during ball strikes, and on the
mixer policy during transitions.

7.2 Evaluation for agent-agent interaction
We evaluate the performance of learned strategies in the agent-
agent interaction environment under both competition and cooper-
ation settings. The competition strategy aims to develop an agent
that achieves a higher winning rate than the opponent. The coop-
eration strategy develops an agent that can play gently with the
opponent to increase the length of rallies. As a baseline, we learn
a strategy policy via reinforcement learning (RL). Please refer to
Appendix E for details on training the RL baseline. Our method
and the RL baseline are compared by having them play with two
types of opponents: the random strategy and the video strategy
opponent introduced in Section 6. Each evaluation is computed over
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Table 3: Strategy evaluation. We report the winning rates for
the competition setting and average rounds for the coopera-
tion setting.

Competition Cooperation
RL Ours RL Ours

Random op 0.641 0.687 14.9 16.4
Video op 0.637 0.681 15.6 18.2

10k points. Table 3 shows the winning rate and the average rounds
for the competition and cooperation settings. Our strategy learning
algorithm can achieve higher winning rates for the competition
setting and can maintain longer rallies for the cooperation setting
for both opponents.

In Figure 6 and 7, we visualize the histogram of skill commands
from the strategy policies, and the target landing locations. In Fig-
ure 7, we also provide ball landing locations captured from real
players during competitive matches. We observe that our method
has a more similar distribution of landing locations to humans than
RL. RL converges to less diverse skill commands and it only hits to
a small region of the table. In contrast, our method utilizes various
skills and target locations throughout the gameplay.We also include
qualitative gameplay visualizations in Figure 9. We further let RL
and our method compete with each other, and report the winning
rates in Table 4. Each method has two strategy policies trained with
two opponents, therefore, we have four matches in total. Because
RL falls into a local minimum and overfits to a specific opponent,
our method achieves a much higher winning rate.

7.3 Evaluation of Human-agent interaction
Before learning strategies for the human-agent interaction environ-
ment, we finetune the skill-level controller using the play data of a
human user interacting with the agent equipped with the original
skill-level controller. The finetuning is required because of the do-
main gap between what the simulated agent has experienced and
the styles of a real human user in the VR environment. After finetun-
ing the skill controller, strategies are learned by following similar
procedures as the agent-agent interaction environment. For train-
ing a competition strategy, we use demonstrations that result in the
agent winning points, thus presenting more challenging returns
for the human opponent. In contrast, for training a cooperative
strategy, we use demonstrations where the human can maintain
rallies, emphasizing easier ball returns for the human. These demon-
strations serve as expert demonstrations in Algorithm 1. We report
the winning rate of the agent and the average hits between the user
and the agent in Table 5. When playing with the initial policies, the
agent can achieve a winning rate of 64% and a rally with 4.04 hits
on average. After two iterations of refinement of the competition
strategy, the agent can achieve a winning rate of 78% , and the
average number of hits drops to 3.75. For the cooperative strategy,
the winning rate drops to 58%, and the user can achieve a rally with
an average of 5.34 hits. These results demonstrate that our strategy
learning algorithm is also effective for the human-agent interaction
environment. We provide screenshots of real-time human-agent
gameplay video in Figure 10.

Table 4: Winning rates between our method and RL. The
opponent in parentheses is the opponent during training of
the strategy policy.

Ours (random op) Ours (video op)

RL (random op) 0.45 vs 0.55 0.47 vs 0.53
RL (video op) 0.42 vs 0.58 0.42 vs 0.58

Table 5: Evaluation of human-agent interaction.

Initial policies Competition Cooperation

Winning rate 0.64 0.78 0.58
Avg hits 4.04 3.75 5.34

8 DISCUSSION AND CONCLUSION
Although our method produces agents that play competitively and
more naturally, it still has several limitations. First, although build-
ing individual policies for each skill and combining them via the
mixer policy clearly improves the generated motion quality and
task performance, our model would not scale well to a dataset in-
cluding hundreds of different skills. Developing a hybrid model
that combines our approach with a model learnable from unlabeled
motions to achieve both high motion quality and scalability would
be an interesting future research topic. Second, because our method
is data-driven, the captured motion quality significantly affects the
final motion quality. For example, the player tends to use large
arm motions, and this motion style appears in our results as well.
However, in matches, using less arm motion could be a way to
conserve energy, and concealed movements can also confuse the
opponent. Lastly, although we employ a rigid-body simulation for
every component, including the ball, player, and table, where the
ball can spin as well, air resistance is modeled using only damping
based on velocity, rather than incorporating the Magnus effect,
which bends the ball trajectory due to air pressure differences. This
omission could impact the realism of our animations and the final
strategies our system learned.

In this paper, we introduce a learning approach for physics-
based table tennis animation. We develop a hierarchical controller
structure, which overcomes the mode collapse problem that appears
frequently in reusable latent-based models. Our approach not only
improves overall motion quality but also enables us to learn effective
decision strategies for two types of environments: agent-agent and
human-agent interactions.
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Figure 8: Visualization of the average blending weights 𝜑 of the shoulder, elbow, and wrist joints. The weights of the mixer
policy are usually lowest when the paddle contacts the ball, and higher before and after transitions between different skills.

Figure 9: Agent-agent gameplay. Blue agent is applying our strategy-level controller. The red dot is the target. We demonstrate
four skills; the forehand smash is less obvious because the opponent does not deliver high and slow shots.

Figure 10: Human-agent interaction screenshots. A human controls a simulated paddle and the agent is simulated and controlled
by our method.
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